Participles Simply Explained

Uses of Participles:

Adverbial- This means that the participle is emphasizing or stressing the verb it modifies. Adjectival- This means that the participle is emphasizing or stressing a noun or pronoun. Two adjectival uses of the participle is attributive and substantival.
Attributive- This means that the participle is describing or identifying the noun or pronoun it modifies with which it agrees with in gender, case, and number.
Substantival- This means that the participle is standing in as a noun.

To determine if a participle is adverbial, attributive, or substantive you only need to ask two questions. They are:

1. Is there an article?

- If there is not then it is attributive. If there is an article, then it is attributive or substantive.

2. Is there a noun functioning as the subject that is not a participle?

- If there is a noun as the subject other than the participle, then it is attributive. If there is not a noun as the subject outside of the participle, then it is substantival.

Translating participles:

1. If it is adverbial use "while," "when," or "as" in the present tense and "after" in the aorist or perfect tenses.
2. If it is attributive translate use "who" or "which" in your translation.
3. If it is substantive translate it using "who" or "which" in your translation. Also, in regard to the substantival use you may need to make it "He who" or "That which" in order for it to make sense in English.

Present Active Participle:

For the present active participles what you need to know is that the endings just add the present participle form of $\varepsilon^{\prime}(\mu '$ ' onto the verb stem. Yes, I know that Prof. Matthews is not requiring us to know the present active participle form of ε^{\prime} ' $\mu \mathrm{l}$ but knowing it makes learning some paradigms easier, because then they can be seen to be more regular and have fewer steps to arrive at the answer. To learn this any other way would be to allow for several exceptions to paradigms we already know. Therefore, I recommend learning the present active participle form of $\varepsilon^{\prime} 1 \mu$ ' . Here's how to use it to learn the present active participle of $\lambda \hat{v} \omega$. All you do is take the verb stem λv and then tack on the present active participle of $\varepsilon^{\prime} 1 \mu$ '́t. For example, $\lambda v \omega$ is declined as follows as a present active participle:

Singular:

N	$\lambda v ́ \omega \nu$	λ v́ovó	$\lambda \bar{v} 0 v$
G	λ vovotos	λ voov́ons	λ v́ovtos
D	λ ט́ovtı	λ vov́on	λ v́ovet
A	$\lambda v ́ o v \tau \alpha$		$\lambda \bar{v} 0 v$

Plural:

G $\lambda v o ́ v \tau \omega \nu \lambda v o \sigma \bar{\omega} \nu \lambda v o ́ v \tau \omega v$
D λ v́ovol (v) λ vov́б α ıs λ v́ovol (v)
A λ v́ovtas $\lambda v o v ́ \sigma \alpha s ~ \lambda v ́ o v \tau \alpha ~$
Remember that the present form of $\varepsilon^{\prime} \mu^{\prime}$ is:

N	$\omega \nu$	ovo α	OV
G	ovtos	ov́бทs	OVTOS
D	'ov $\tau \downarrow$	ov́ซṇ	OVT1
A	ov $\tau \alpha$	ovo ${ }^{\text {v }}$	OV
N	оข $\tau \varepsilon \varsigma$	ovodı	ov $\tau \alpha$
G	óv $\tau \omega$	ovō̄v	$\delta^{\circ} \tau \tau \omega$
D	ovol (v)	oúб人ls	ovol (v)
A	ovtas	ov́oas	O$\tau \tau \alpha$

However, if that method seems like to much of a burden to you, then here is another method to arrive at the same answers.

1. Write out the verb stem.
2. Add an omega and nu in the nominative masculine singular. The connecting vowel is omicron in all the other cases within the paradigm. (Skip to step 3 if the verb you are declining is feminine.)
3. In the feminine voice add an omicron and upsilon to the verb stem.
4. Add the $\pi \alpha \sigma$ paradigm for endings. Just drop the $\pi \alpha$ in $\pi \alpha \sigma$ to get the endings.
5. In the dative plural add upsilon in front of the sigma iota.

Example:

Masculine

Singular

Verb stem		Omicron added	$\pi \alpha \sigma$ endings
N	λv	ω (from step 2)	v (from step 2)
G	λv	0	$\nu \tau 0 \varsigma$
D	λv	0	$v \tau \tau$
A	λv	0	$v \tau \alpha \varsigma$

Verb stem		Omicron added	$\pi \alpha \sigma$ endings
N	λv	0	$v \tau \varepsilon \varsigma$
G	λv	0	$v \tau \omega v$
D	λv	0	$v \sigma 1$ (step 5)
A	λv	0	$v \tau \alpha \varsigma$

Feminine:

Verb stem		Omicron and upsilon added	$\pi \alpha \sigma$ feminine endings
N	λv	$o v$ (from step 3)	$\sigma \alpha$
G	λv	$o v$	$\sigma \eta \varsigma$
D	λv	$o v$	$\sigma \eta$
A	λv	$o v$	$\sigma \alpha v$
Verb stem	Omicron and upsilon added	$\pi \alpha \sigma$ feminine endings	
N	λv	$o v$	$\sigma \alpha 1$
G	λv	$o v$	$\sigma \omega v$
D	λv	$o v$	$\sigma \alpha i \varsigma$
A	λv	$o v$	$\sigma \alpha \varsigma$

Perfect Active Participle:

Masculine voice:

The masculine perfect active participle is the same as present active particple except you:

1. Add reduplication in front of the verb stem.
2. Add a kappa and omega after the verb stem in the nominative masculine singular
3. Add $\kappa \circ \tau$ in all other cases within paradigm if the verb is masculine or neuter.
4. Drop the tau from $\kappa \circ \tau$ in the dative plural.
5. Add third declension masculine endings for the masculine voice and third declension neuter endings for the neuter voice.

Example of $\lambda \hat{v} \omega$:

Reduplication Verb stem | Kappa ω |
| :---: |
| or ко τ | Third declension endings

N	$\lambda \varepsilon$	λv	$\kappa \omega$	ς
G	$\lambda \varepsilon$	λv	$\kappa \circ \tau$	$\circ \varsigma$
D	$\lambda \varepsilon$	λv	$\kappa \circ \tau$	l
A	$\lambda \varepsilon$	λv	$\kappa \circ \tau$	α
N	$\lambda \varepsilon$	λv	$\kappa \sigma \tau$	$\varepsilon \varsigma$
G	$\lambda \varepsilon$	λv	$\kappa \circ \tau$	ωv
D	$\lambda \varepsilon$	λv	$\kappa \circ$	$\sigma \iota$
A	$\lambda \varepsilon$	λv	$\kappa \circ \tau$	$\alpha \varsigma$

Feminine Voice:

The feminine perfect active participle is even easier that the masculine active participle. All you do to the present active participle to get the perfect active participle is:

1. Add reduplication before the verb stem.
2. Add $\kappa v \imath$ after verb stem.
3. Add first declension alpha pattern endings to $K v i$.

Example of $\lambda \hat{v} \omega$:

Reduplication Verb stem $\kappa \cup \imath$ added alpha endings

N	$\lambda \varepsilon$	λv	$\kappa v \imath$	α
G	$\lambda \varepsilon$	λv	$\kappa v \imath$	$\alpha \varsigma$
D	$\lambda \varepsilon$	λv	$\kappa v \imath$	α
A	$\lambda \varepsilon$	λv	$\kappa v \imath$	αv

N	$\lambda \varepsilon$	λv	$\kappa v \imath$	αl
G	$\lambda \varepsilon$	λv	$\kappa v \imath$	$\bar{\omega} v$
D	$\lambda \varepsilon$	λv	$\kappa v \imath$	$\alpha \iota \varsigma$
A	$\lambda \varepsilon$	λv	$\kappa v \imath$	$\alpha \varsigma$

Aorist Active Participle:

The Aorist Active Particple just follows the $\pi \alpha \varsigma$ paradigm. To decline an Aorist Active Particple do the following steps.

1. Write out the stem of the verb
2. Add a sigma to the verb stem in the masculine and neuter voices and add a sigma and alpha to the verb stem in the feminine voice.
3. Add the $\pi \alpha \varsigma$ paradigm to the sigma. (Write out $\pi \alpha \sigma$ minus pi in masculine voice and $\pi \alpha \sigma$ pi alpha in the feminine voice.)

Example of $\lambda \hat{v} \omega$:

Masculine voice

Verb Stem: Sigma $\Pi \propto \varsigma$ paradigm (minus π)

N	λv	σ
G	λv	σ
D	λv	σ
A	λv	σ
$\alpha \nu \tau \sigma$		
	$\sigma \nu \tau l$	
	$\alpha \nu \tau \alpha$	

N	λv	σ	$\alpha \nu \tau \varepsilon \varsigma$
G	λv	σ	$\alpha \nu \tau \omega \nu$
D	λv	σ	$\alpha \sigma \iota(\nu)$
A	λv	σ	$\alpha \nu \tau \alpha \varsigma$

Feminine Voice

Verb Stem: Sigma Alpha $\Pi \alpha$ s paradigm (minus $\pi \alpha$)
$\mathrm{N} \lambda v \quad \sigma \alpha \quad \sigma \alpha$

G $\lambda v \quad \sigma \alpha \quad \sigma \eta \varsigma$
D $\lambda v \quad \sigma \alpha \quad \sigma!$
A $\lambda v \quad \sigma \alpha \quad \sigma \alpha \nu$

N	λv	$\sigma \alpha$
G	λv	$\sigma \alpha$
D	λv	$\sigma \alpha$
A	λv	$\sigma \alpha$
$\sigma \bar{\omega} v$		
	$\sigma \alpha \iota \varsigma$	
	$\sigma \alpha \varsigma$	

Present Middle/Passive and Aorist Middle Participles:

For both the present middle/passive and aorist middle participle just simply do the following:

1. To the verb stem and connecting vowel add $\mu \varepsilon v$.
2. To the $\mu \varepsilon \nu$ add on second and first declension endings like you would on an adjective.
3. In the Aorist tense add $\sigma \alpha$ after the verb stem and before $\mu \varepsilon v$.

Example of $\lambda \hat{v} \omega$:

Verb Stem: Connecting $\mu \varepsilon \nu$ added 2 nd Decl.
Vowel endings

$\mathrm{N} \lambda v$	0	$\mu \varepsilon v$	$o \varsigma$
$\mathrm{G} \lambda v$	0	$\mu \varepsilon v$	$o v$
$\mathrm{D} \lambda v$	0	$\mu \varepsilon v$	ω
$\mathrm{~A} \lambda v$	0	$\mu \varepsilon v$	$o v$
$\mathrm{~N} \lambda v$	0	$\mu \varepsilon v$	01
$\mathrm{G} \lambda v$	0	$\mu \varepsilon v$	ωv
$\mathrm{D} \lambda v$	0	$\mu \varepsilon v$	01ς
$\mathrm{~A} \lambda v$	0	$\mu \varepsilon v$	$o v \varsigma$

Verb Stem: Connecting $\mu \varepsilon v$ added 1st Decl. Vowel endings.

N	λv	0	$\mu \varepsilon v$
G	λv	0	$\mu \varepsilon v$
D	λv	0	$\mu \varepsilon v$
A	λv	0	$\mu \varepsilon v$

$\mathrm{N} \lambda v$	0	$\mu \varepsilon v$	αl
$\mathrm{G} \lambda v$	0	$\mu \varepsilon v$	ωv
$\mathrm{D} \lambda v$	0	$\mu \varepsilon v$	$\alpha l \zeta$
$\mathrm{~A} \lambda v$	0	$\mu \varepsilon v$	$\alpha \varsigma$

Example of $\lambda \hat{v} \omega$ in the Aorist MiddleTense:

Verb Stem:	$\sigma \alpha$	$\mu \varepsilon v$ added	2nd Decl endings
N λv	$\sigma \alpha$	$\mu \varepsilon v$	$o s$
G λv	$\sigma \alpha$	$\mu \varepsilon v$	$o v$
D λv	$\sigma \alpha$	$\mu \varepsilon v$	ω
A λv	$\sigma \alpha$	$\mu \varepsilon v$	$o v$
N λv	$\sigma \alpha$	$\mu \varepsilon v$	$o \imath$
G λv	$\sigma \alpha$	$\mu \varepsilon v$	ωv
D λv	$\sigma \alpha$	$\mu \varepsilon v$	$o l s$
A λv	$\sigma \alpha$	$\mu \varepsilon v$	$o v \varsigma$

Verb Stem: $\quad \sigma \alpha$ added $\mu \varepsilon v$ added 1 st Decl.

N	λv	$\sigma \alpha$	$\mu \varepsilon v$
$\mathrm{G} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	η
$\mathrm{D} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	η
$\mathrm{~A} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	ηv
$\mathrm{~N} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	αl
$\mathrm{G} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	ωv
$\mathrm{D} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	$\alpha 1 \varsigma$
$\mathrm{~A} \lambda v$	$\sigma \alpha$	$\mu \varepsilon v$	$\alpha \varsigma$

Perfect Middle/Passive Participles:

The perfect middle/passive is just the present middle/passive participle with reduplication added to the beginning and the connecting vowel deleted. For example, compare the:

Present Middle/Passive Participle

Verb Stem:Connecting Vowel$\mu \varepsilon \nu$ added	2nd Decl. endings

$\mathrm{N} \lambda v$	0	$\mu \varepsilon v$	$o \zeta$
$\mathrm{G} \lambda v$	0	$\mu \varepsilon v$	$o v$
$\mathrm{D} \lambda v$	0	$\mu \varepsilon v$	ω
$\mathrm{~A} \lambda v$	0	$\mu \varepsilon v$	$o v$
$\mathrm{~N} \lambda v$	0	$\mu \varepsilon v$	$0 \imath$
$\mathrm{G} \lambda v$	0	$\mu \varepsilon v$	ωv
$\mathrm{D} \lambda v$	0	$\mu \varepsilon v$	01ς
$\mathrm{~A} \lambda v$	0	$\mu \varepsilon v$	$o v \zeta$

Perfect Middle/Passive Participle

Reduplication Verb Stem: $\mu \varepsilon \nu$ added 2nd Decl.

N	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
G	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
D	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
A	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
		$o \zeta$	
N	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
G	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
D	$\lambda \varepsilon$	λv	$\mu \varepsilon v$
A	$\lambda \varepsilon$	λv	$\mu \varepsilon v$

Notice that how the Perfect Middle/Passive Participle is the same as the Present Middle/Passive except it has reduplication and no connecting vowel.

Baugh's Two "Irregular" Aorist Participles:

Baugh gives to paradigms for the "irregular" Aorist participles of $\gamma \imath \nu \omega \sigma \kappa \omega$ and $\kappa \alpha \tau \alpha \beta \alpha i v \omega$.
However, I think it is unfortunate that Baugh calls them irregular, because they are not irregular in the way that they are conjugated. There are just three things that you need to do decline the "irregular" aorist participle of $\gamma \iota \omega \omega \kappa \omega$. They are:

1. The stem of $\gamma \imath \nu \omega \sigma \kappa \omega$ changes to $\gamma \nu$.
2. Tack on the present active participle of $\varepsilon^{\prime}(\mu$ ' .
3. Change the nominative masculine singular to $0 \vee \varsigma$ instead of ωv.

Example: (Masculine)

Singular:

$\gamma \nu$ as stem	
E'ıí Pres. Act. Part. endings	
N	$\gamma \nu$

Plural:

1. The stem of $\gamma \imath \nu \omega \sigma \kappa \omega$ changes to $\gamma \nu$.
2. Add $O v$ to $\gamma \nu$ in the nominative masculine singular and dative masculine plural.
3. Add $o v \tau$ everywhere else within the paradigm.
4. Tack on third declension endings.

Example:

Singular:

$\gamma \nu$ as stem		$O \nu$ and $0 \nu \tau$	third declension endings
N	$\gamma \nu$	$O \nu$	ς
G	$\gamma \nu$	$o \nu \tau$	$\circ \varsigma$
D	$\gamma \nu$	$o \nu \tau$	l
A	$\gamma \nu$	$o \nu \tau$	α

Plural:

$\gamma \nu$ as stem		Ov and ov	third declension endings
N	γv	$o v$	$\varepsilon \varsigma$
G	γv	$o v \tau$	ωv
D	γv	$o v$	$\sigma \iota v$
A	γv	$O v \tau$	$\alpha \zeta$

To decline the "irregular" Aorist participle of $\kappa \alpha \tau \alpha \beta \alpha i v \omega$ you just need to:

1. Drop $\alpha^{\prime} v \omega$ from $\kappa \alpha \tau \alpha \beta \alpha^{\prime} v \omega$.
2. Add the $\pi \alpha \sigma$ paradigm minus the pi.

Example:

Singular:

$\alpha^{\prime} t \nu \omega$ dropped $\quad \pi \alpha \sigma$ paradigm minus pi

N	$\kappa \alpha \tau \alpha \beta$	$\alpha \alpha$
G	$\kappa \alpha \tau \alpha \beta$	$\alpha ́ v \tau \circ \varsigma$
D	$\kappa \alpha \tau \alpha \beta$	$\alpha ́ v \tau \tau$
A	$\kappa \alpha \tau \alpha \beta$	$\alpha \alpha \nu \tau \alpha$

Plural:

$\alpha^{\prime} \nu \omega$ dropped $\quad \pi \alpha \sigma$ paradigm minus pi
$\mathrm{N} \kappa \alpha \tau \alpha \beta \quad \alpha \nu \tau \varepsilon \varsigma$

G $\kappa \alpha \tau \alpha \beta \quad \alpha \nu \tau \omega \nu$
D $\kappa \alpha \tau \alpha \beta \quad \bar{\alpha} \sigma \iota(v)$
A $\kappa \alpha \tau \alpha \beta \quad \alpha \nu \tau \alpha \varsigma$

